

# Изменение седиментационных потоков радиоизотопов плутония в верховье Севастопольской бухты

Параскив А.А., Терещенко Н.Н., Проскурнин В.Ю., Чужикова-Проскурнина О.Д., Вахрушев М.О.

ФИЦ «Институт биологии южных морей им. А.О. Ковалевского РАН»

## Введение

В формировании самоочищения морских вод от поступающих техногенных веществ принимает участие множество природных процессов, одним из которых является их концентрирование на взвешенном веществе и перенос в донные отложения за счет гравитационной седиментации. Среди техногенных веществ, поступающих в морские экосистемы, особое место занимают радиоизотопы плутония <sup>238</sup>Pu и <sup>239+240</sup>Pu, обладающие высокой радиотоксичностью. Поэтому количественная оценка процессов самоочищения морских вод в отношении <sup>238</sup>Pu и <sup>239+240</sup>Pu является актуальной задачей. В акваторию Черного моря данные радиоизотопы поступали в основном в результате радиоактивных выпадений после испытаний ядерного оружия в открытых средах и аварии на Чернобыльской АЭС.

**Цель работы** — количественная оценка изменения седиментационных потоков <sup>238</sup>Pu и <sup>239+240</sup>Pu в верховье Севастопольской бухты в период 1962–2019 гг.

# Материалы и методы исследования

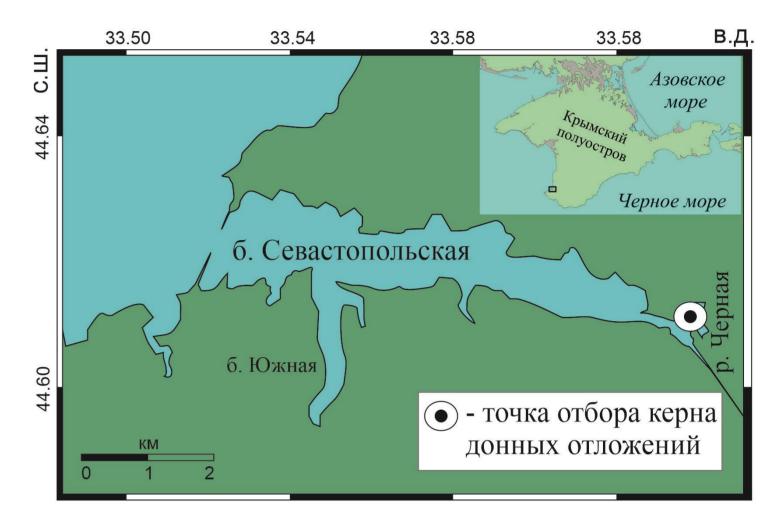
Для проведения данного исследования в 2019 г. в верховье Севастопольской бухты (рис. 1) на глубине 9 м был отобран керн донных отложений высотой 31 см. Отбор керна осуществляли с борта маломерного судна с использованием акриловой трубки с вакуумным затвором. В лаборатории керн нарезали на слои по 2 см. Пробы донных отложений обрабатывали в соответствии с общепринятыми методиками. Измерения проводили на альфа-спектрометре фирмы ORTEC с полупроводниковыми кремниевыми детекторами.

#### Результаты и обсуждение

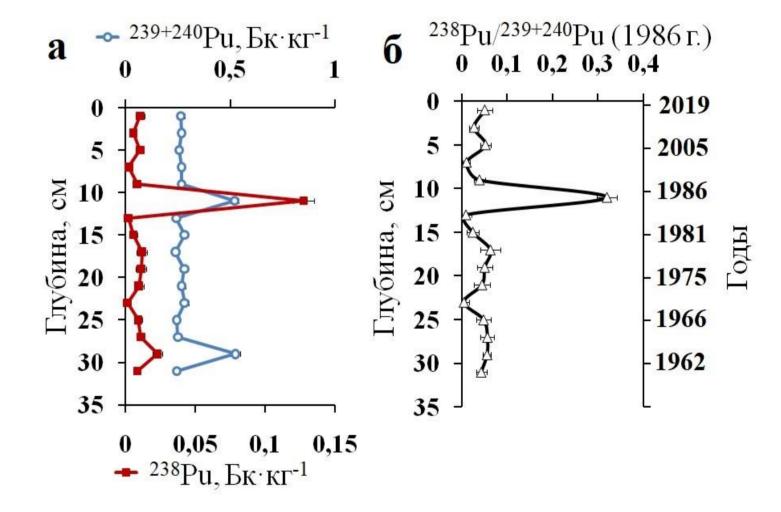
В результате было получено вертикальное распределение радиоизотопов плутония в донных осадках (**рис. 2**). На профиле удельной активности <sup>239+240</sup>Pu были определены два пика – в слоях 10–12 см и 28–30 см (**рис. 2a**). Максимум удельной активности <sup>238</sup>Pu был определен в слое 10–12 см, что отразилось на профиле <sup>238</sup>Pu/<sup>239+240</sup>Pu. Так, в слое 10–12 см данное отношение активностей было на порядок величин больше, чем в остальных слоях керна (**рис. 26**). Это дало основание отнести данный слой осадка к 1986 г., когда происходили максимальные выпадения после аварии на ЧАЭС. При этом слой осадка на глубине 28–30 см был датирован 1962 г., когда наблюдали наибольшие выпадения вследствие испытаний ядерного оружия в открытых средах.

Результаты геохронологической датировки донных отложений позволили провести расчет таких биогеохимических параметров, как скорость осадконакопления (SR, мм·год<sup>-1</sup>) и абсолютные массы донных осадков (MAR, г·м<sup>-2</sup>·год<sup>-1</sup>). Установлено, что в период 1962–1986 гг. SR в изучаемом районе составляла 7,5 мм·год<sup>-1</sup>, а в период 1986–2019 гг. – 3,6 мм·год<sup>-1</sup>. Значения MAR в обозначенные периоды также снизились: с 3895 до 1679 г·м<sup>-2</sup>·год<sup>-1</sup>.

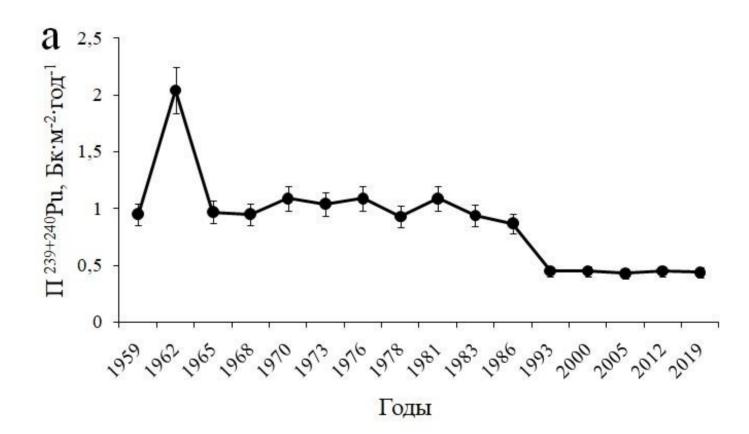
Основываясь на результатах определения значений удельной активности <sup>238</sup>Pu и <sup>239+240</sup>Pu, а также величин MAR, были рассчитаны седиментационные потоки изучаемых радиоизотопов (П, Бк·м<sup>-2</sup>·год<sup>-1</sup>) как количественный показатель самоочищения вод бухты (**рис. 3**). Показано, что в период 1962—1986 гг. максимальный поток <sup>239+240</sup>Pu составлял 2,1 Бк·м<sup>-2</sup>·год<sup>-1</sup> и был приурочен к периоду усиленных глобальных выпадений (**рис. 3a**). В дальнейшем седиментационный поток <sup>239+240</sup>Pu приобрел стационарный характер, вплоть до начала 1980-х гг., когда он начал снижаться. Вероятно, это произошло вследствие зарегулирования стока реки Черной после окончания наращивания дамбы на Чернореченском водохранилище. Это привело к уменьшению абсолютных масс донных осадков и к началу 1990-х гг. седиментационный поток <sup>239+240</sup>Pu уменьшился в 2,2 раза по сравнению с дочернобыльским периодом, и вновь приобрел стационарный характер.

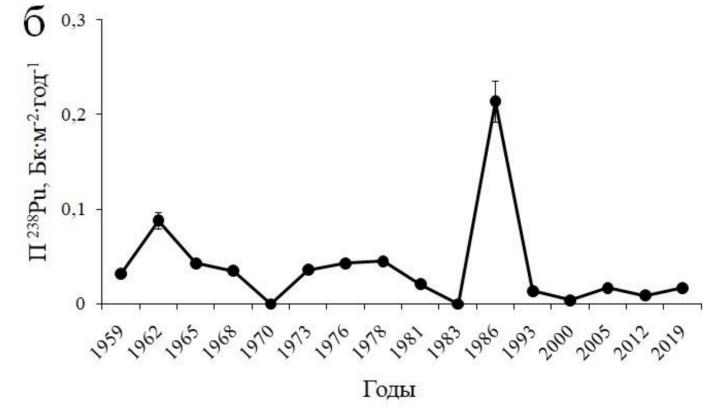

Потоки  $^{238}$ Ри составляли 5–10 % от величин потоков  $^{239+240}$ Ри. Максимальный поток  $^{238}$ Ри (**рис. 36**) был приурочен к 1986 г. (0,2 Бк·м- $^2$ ·год- $^1$ ) что является отражением особенности изотопной композиции чернобыльских радиоактивных выпадений, в которых доля  $^{238}$ Ри была на порядок величин выше, чем в выпадениях после испытаний ядерного оружия в открытых средах.

### Заключение


Таким образом, в результате проведенных исследований было установлено, что седиментационный поток  $^{239+240}$ Ри в пост-чернобыльский период (1986–2019 гг.) снизился в 2,2 раза в сравнении с дочернобыльским (1962–1986 гг.). Потоки  $^{238}$ Ри составляли лишь 5–10 % от значений потоков  $^{239+240}$ Ри. При этом максимальные величины потоков  $^{239+240}$ Ри были приурочены к 1962 г., а  $^{238}$ Ри – к 1986 г.

Показано, что величины седиментационных потоков плутония могут изменяться на полувековом масштабе не только вследствие снижения или увеличения удельной активности <sup>238</sup>Pu и <sup>239+240</sup>Pu, но и как результат снижения величины MAR в данном районе акватории бухты.


Вероятно, наблюдаемые изменения являются следствием зарегулирования стока реки Черной (впадает в Севастопольскую бухту в ее верховье) после реконструкции Чернореченского водохранилища. Так, введенное в эксплуатацию в 1956 г., водохранилище увеличили в период 1977—1984 гг. посредством наращивания дамбы до высоты 36 м. Площадь поверхности зеркала водохранилища была увеличена с 2,5 до 6 км². По всей видимости, это привело к уменьшению количества взвешенного вещества, привносимого речным стоком в верховье бухты и, как следствие, к уменьшению величин SR и MAR.




**Рис. 1**. Карта-схема Севастопольской бухты с точкой отбора керна донных отложений



**Рис. 2**. Вертикальное распределение  $^{238}$ Ри и  $^{239+240}$ Ри (а) и  $^{238}$ Ри/ $^{239+240}$ Ри (б) в донных отложениях в верховье Севастопольской бухты





**Рис. 3**. Геохронологическая реконструкция седиментационных потоков <sup>239+240</sup>Pu (а) и <sup>238</sup>Pu (б) в верховье Севастопольской бухты

Исследование выполнено в рамках темы госзадания ФИЦ ИнБЮМ № 121031500515-8 «Молисмологические и биогеохимические основы гомеостаза морских экосистем», а также при поддержке РФФИ по научному гранту Аспиранты № 20-35-900041